Biến phức định lý và áp dụng

Tác giả : Nguyễn Văn Mậu
  • Lượt đọc : 117
  • Kích thước : 1.58 MB
  • Số trang : 415
  • Đăng lúc : 10 tháng trước
  • Số lượt tải : 58
  • Số lượt xem : 697
  • Đọc trên điện thoại :
Chuyên đề "Biến phức, định lý và áp dụng" đóng vai trò như là một công cụ đắc lực nhằm giải quyết hiệu quả nhiều bài toán của hình học, giải tích, đại số, số học và toán tổ hợp. Ngoài ra, các tính chất cơ bản của số phức và hàm biến phức còn được sử dụng nhiều trong toán hiện đại, các mô hình toán ứng dụng, ...
Trong các kỳ thi Olympic toán sinh viên quốc tế và quốc gia, thì các bài toán liên quan đến biến phức thường được đề cập dưới nhiều dạng phong phú thông qua các đặc trưng và các biến đổi khác nhau của phương pháp giải, vừa mang tính tổng hợp cao vừa mang tính đặc thù sâu sắc.
Chương trình toán học ở bậc Trung học phổ thông của hầu hết các nước đều có phần kiến thức số phức. Ở nước ta, sau nhiều lần cải cách, nội dung số phức cuối cùng cũng đã được đưa vào chương trình Giải tích 12, tuy nhiên còn rất đơn giản. Vì nhiều lý do khác nhau, rất nhiều học sinh, thậm chí là học sinh khá, giỏi sau khi học xong phần số phức cũng chỉ hiểu một cách rất đơn sơ: sử dụng số phức, có thể giải được mọi phương trình bậc hai, tính một vài tổng đặc biệt, .
Việc sử dụng số phức và biến phức trong nghiên cứu, khảo sát hình học (phẳng và không gian) tỏ ra có nhiều ưu việt, nhất là trong việc xem xét các vấn đề liên quan đến các phép biến hình, quỹ tích và các dạng miền bảo giác.
Nhìn chung, hiện nay, chuyên đề số phức và biến phức (cho bậc trung học phổ thông và đại học) đã được trình bày ở dạng giáo trình, trình bày lý thuyết cơ bản và có đề cập đến các áp dụng trực tiếp theo cách phân loại phương pháp và theo đặc thù cụ thể của các dạng ví dụ minh họa.
Để đáp ứng nhu cầu bồi dưỡng nghiệp vụ sau đại học cho đội ngũ giáo viên, các học viên cao học, nghiên cứu sinh chuyên ngành Giải tích, Phương trình vi phân và tích phân, Phương pháp toán sơ cấp và bồi dưỡng học sinh giỏi về chuyên đề số phức, biến phức và áp dụng, chúng tôi viết cuốn chuyên đề nhỏ này nhằm trình bày đầy đủ các kiến thức tổng quan, các kỹ thuật cơ bản về phương pháp sử dụng số phức và biến phức để tiếp cận các dạng toán khác nhau của hình học, số học, toán rời rạc và các lĩnh vực liên quan.
Đây là chuyên đề bồi dưỡng nghiệp vụ sau đại học mà các tác giả đã giảng dạy cho các lớp cao học, cho đội tuyển thi olympíc toán sinh viên quốc gia và quốc tế và là nội dung bồi dưỡng giáo viên các trường đại học, cao đẳng và trường chuyên trong cả nước từ nhiều năm nay.
Trong tài liệu này, chúng tôi đã sử dụng một số nội dung về lý thuyết cũng như bài tập mang tính hệ thống đã được các Thạc sĩ và học viên cao học thực hiện theo một hệ thống lôgíc nhất định dưới dạng các chuyên đề nghiệp vụ bậc sau đại học. Những dạng bài tập khác là một số đề thi của các kì thi học sinh giỏi và các bài toán trong các tạp chí Toán học và tuổi trẻ, Kvant, Mathematica, các sách giáo khoa, chuyên đề và chuyên khảo, ... hiện hành ở trong nước.

Cuốn sách được chia thành 5 chương.

Chương 1. Số phức và biến phức, lịch sử và các dạng biểu diễn
Chương 2. Tính toán trên số phức và biến phức
Chương 3. Một số ứng dụng của số phức trong đại số
Chương 4. Số phức trong các bài toán số học và tổ hợp
Chương 5. Số phức và ứng dụng trong hình học
Chương 6. Số phức và lời giải của phương trình sai phân

Các tác giả xin chân thành cảm ơn lãnh đạo Bộ Giáo Dục và Đào tạo, trường ĐHKHTN, ĐHQGHN đã ủng hộ và động viên để các trường hè bồi dưỡng nâng cao kiến thức chuyên môn nghiệp vụ sau đại học các năm từ 2002 đến 2009 đã thành công tốt đẹp.
Cảm ơn các giáo viên từ 64 tỉnh thành trong cả nước đã nghe giảng, trao đổi semina và đọc bản thảo, đã gửi nhiều ý kiến đóng góp quan trọng cho nội dung cũng như cách trình bày thứ tự các chuyên đề.
Cuốn sách được hoàn thành với sự giúp đỡ nhiệt tình về mặt nội dung của các thành viên trong semina liên trường-viện Giải tích - Đại số của Trường Đại Học Khoa Học Tự Nhiên, ĐHQGHN.
Các tác giả xin bày tỏ lòng biết ơn tới đồng nghiệp và độc giả có ý kiến đóng góp để cuốn sách chuyên đề này được hoàn thiện.

Hà Nội ngày 02 tháng 06 năm 2009
Các tác giả